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Abstract:  PARC is an “appended numeral” system of natural deduction that I learned as an undergraduate and have 

taught for many years.  Despite its considerable pedagogical strengths, PARC appears to have never been published.  

The system features explicit “tracking” of premises and assumptions throughout a derivation, the collapsing of 

indirect proofs into conditional proofs, and a very simple set of quantificational rules without the long list of 

exceptions that bedevil students learning existential instantiation and universal generalization.  The system can be 

used with any Copi-style set of inference rules so it is quite adaptable to many mainstream symbolic logic textbooks.  

Consequently, PARC may be especially attractive to logic teachers who find Jaśkowski/Gentzen-style 

introduction/elimination rules to be far less “natural” than Copi-style rules.  The PARC system is also keyboard-

friendly in comparison to the widely adopted Jaśkowski-style graphical subproof system of natural deduction, viz., 

Fitch diagrams and Copi “bent arrow” diagrams. 

 

 

The pedagogy of most contemporary symbolic logic textbooks is firmly rooted in the 

natural deduction systems of Stanisław Jaśkowski1 and Gerhard Gentzen.2  First-order logic can 

be also be taught as an axiomatic system after Frege, Russell, and Hilbert, or using a Gentzen 

sequent calculus, but this is rare in undergraduate textbooks.  Unhappily, the natural deduction 

systems developed and employed in logic textbooks over the past 80 years vary widely in what is 

considered “natural.” 3  Symbolic logic teachers who teach natural deduction thus continue to 

face substantial pedagogical choices and challenges. 

In what follows, I describe a system of natural deduction that I learned as an 

undergraduate and have taught for many years.  I call the system “PARC,” an initialism for the 

four deduction metarules of sentential and predicate logic, P, A, R, and C.  PARC appears to date 

from the mid-1960s and  is clearly derived in part from Patrick Suppes’ classic 1957 textbook, 

Introduction to Logic,4 although there are substantial differences.  Other central aspects of PARC 

appear to be derived from the third edition of Copi’s Symbolic Logic.5  A number of textbooks6 

                                                           
1Stanisław Jaśkowski, “On the Rules of Suppositions in Formal Logic,” Studia Logica 1 (1934), 5-32, 

reprinted in Polish Logic, 1920—1939, ed. Storrs McCall (London:  Oxford University Press, 1967), 232-258. 
2Gerhard Gentzen, “Untersuchungen über das Logische Schließen” [“Investigations into Logical 

Deduction”], Mathematische Zeitschrift 39 (1934/5): 176-210, 405-431, in The Collected Works of Gerhard 

Gentzen, trans. M. E. Szabo (Amsterdam:  North-Holland Publishing Co., 1969), 68-131. 
3For example, see Irving Anellis, “Forty Years of ‘Unnatural’ Natural Deduction and Quantification:  A 

History of First-Order Systems of Natural Deduction from Gentzen to Copi,” Modern Logic 2 (1991), no. 2: 113–

152, and Francis Pelletier, “A Brief History of Natural Deduction,” History and Philosophy of Logic 20 (1999): 1-

31.  These papers are essential reading for anyone interested in the history of natural deduction and my research into 

PARC’s origins owes much to them. 
4Patrick Suppes, Introduction to Logic (New York:  Van Nostrand Reinhold Co., 1957). 
5Irving M. Copi, Symbolic Logic, 3d ed. (New York:  Macmillan Publishing Co, 1967). 
6Early followers of Suppes include E. J. Lemmon, Beginning Logic (London:  Thomas Nelson and Sons, 

1965), Benson Mates, Elementary Logic (New York:  Oxford University Press, 1965), and John L. Pollock, An 
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in the 1960s appear to have based their natural deduction systems on Suppes.  I will compare 

PARC with those systems as well as with Gentzen-style introduction-elimination (“int-elim”) 

systems popularized by Fitch7 and the Copi-style systems that remain popular today.  

I hope to encourage logic instructors to consider using PARC in their introductory 

symbolic logic courses.  First, younger faculty are likely to be unfamiliar with PARC’s Suppes-

style system of premise numbers.  The system has considerable pedagogical strengths, compared 

to current variants of Jaśkowski’s graphical subproof system of natural deduction, viz., the so-

called Fitch diagrams and Copi’s “bent arrow” diagrams found in the majority of current 

introductory symbolic logic textbooks.  Both Fitch’s widely-adopted system of vertical and 

horizontal lines and Copi’s bent arrow subproof diagrams are essentially Jaśkowski’s system of 

nested boxes around subproofs with the tops and right sides of the boxes removed.   

Second, few contemporary symbolic logic textbooks adequately explain why indirect 

proof, existential instantiation or elimination—and in some systems, universal generalization or 

introduction—are all species of conditional proof.  Int-elim systems are often the worst offenders 

here because the subproofs involved in conditional proofs (conditional introduction), indirect 

proofs (negation introduction and elimination), existential elimination, and universal introduction 

are all presented as unrelated primitive rules.  Copi-style systems often present indirect proof as a 

primitive proof strategy unrelated to conditional proof.8 

Third, quantification rules are well-known for their complexity and consequent difficulty 

for students to master.  The history of quantification rules in natural deduction is marked by 

errors, and some errors have persisted through multiple editions of textbooks.9  Most errors 

surround the restrictions on existential instantiation or elimination and universal generalization 

or introduction.  In contrast, PARC’s quantification rules are very simple, in part because there is 

no EI.  This solves the philosophical puzzle of how we can allow a line in a proof (by EI) that is 

not logically implied by any lines in the proof.  Instead, the conditional subproof that underlies 

all EI/E rules is explicitly invoked in PARC.  The semantical mess of “ambiguous names,” 

“quasivariables,” name/variable “flagging,” etc., is exposed and simplified, if not avoided 

entirely.   

This paper focuses on these central problems in teaching symbolic logic and how the 

PARC system provides a genuine alternative to the natural deduction systems in contemporary 

symbolic logic textbooks. 

 

                                                                                                                                                                                           

Introduction to Symbolic Logic (New York:  Holt, Rinehart and Winston, 1969).  I hope to place the PARC system 

historically as best as possible in the future, but its precise origin currently remains unknown to me. 
7Frederick Fitch, Symbolic Logic:  An Introduction (New York:  The Ronald Press, 1952). 
8Readers accustomed to indirect proofs via a primitive rule may want to skip ahead to Section IV below to 

see the the underlying conditional proof basis. 
9Copi’s own first and second editions of Symbolic Logic are notorious for their quantificational rule errors, 

as I learned from my logic professor in graduate school, Hugues Leblanc.  The history of the debate is examined in 

Anellis, “Forty Years,” 127-145.  Seemingly small, but fatal omissions in UG and EG rules persisted in Logic and 

Philosophy through the 10th edition.  See Alan Hausman,, Howard Kahane, and Paul Tidman, Logic and 

Philosophy:  A Modern Introduction, 12th ed. (Boston:  Wadsworth, Cengage Learning, 2013), 272. 
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I. PARC Overview 

 

 In the PARC system of deduction, each line of a proof, derivation or deduction10 is 

written down by one of the four rules, P, A, R, or C.  Rule P allows any formula whatever to be 

written down in a proof, while Rules A and R allow lines to be written that are tautologically 

implied by, or are tautologically equivalent to, previous lines of the deduction.  Rule C, for 

conditional proof, is a standard primitive rule in systems of natural deduction.  Here are the 

PARC deductive rules and definitions.  (Quantifier rules are presented later.)  

 
Rule P: Any formula F may be written down as the nth line of a deduction 

(derivation) if the numeral n is prefixed11 to it. 
 
Rule A: A formula F may be written down as a line of a deduction if both 
 

(a) there are previous lines of the deduction from which F follows by 
some elementary argument form (e.g., Copi’s Rules of Inference), 
and 

 
(b) each numeral prefixed to any of these previous lines is prefixed to 

F. 
 
Rule R: A formula F may be written down as a line of a deduction if both 
 

(a) there is a previous line L of the deduction and a pair of elementary 

logically equivalent formulae G and H (e.g., Copi’s Rules of 
Equivalence) such that G is a formula that occurs in L and it is 
possible to transform L into F by putting H in place of one 
occurrence of G, and 

 

(b) all numerals prefixed to L are prefixed to F. 

 
Rule C: A formula P  Q may be written down as a line of a deduction if both 

 
(a) there are previous lines of the deduction P, and Q, such that P was 

written down by Rule P, and 
 
(b) all numerals prefixed to Q except the numeral prefixed to P are 

prefixed to P  Q. 

 
VALIDITY 
 
An argument with premises P1, . . ., Pn and conclusion C is valid if there is a deduction 

of C as the conclusion from the premises P1, . . ., Pn such that 
 
(a) every line of the deduction is written down by one of the above four Rules, and 

 
(b) each of the premises P1, . . ., Pn is written down by Rule P, and 
 

                                                           

 10I use the terms “derivation,” “deduction,” and “proof” more or less interchangeably throughout this paper.  

This excludes Smullyan truth trees, which I do not regard as deductions, per se, following Richard C. Jeffrey, 

Formal Logic:  Its Scope and Limits (New York:  McGraw-Hill, 1967), 92.   

 11My original PARC notes use the term “appended” when referring to line numbers written down by Rule 

P.  “Prefixed” is more descriptive when referring to premise numbers, since the four Rules, not the premise 

numbers, are appended to the right end of the line. 
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(c) every numeral prefixed to the conclusion C is prefixed to one of the premises 

P1, . . ., Pn. 
 
A formula C is a tautology if there is a deduction of C from zero premises. 

 

II. PARC Rule P and Prefixed Numerals 

 

 Let’s now consider each of these four PARC rules in turn, beginning with Rule P.  Rule P 

states that “any formula F may be written down as the nth line of a deduction (derivation) if the 

numeral n is prefixed  to it.”  Like several other first-order natural deduction systems in the 

1960s, PARC most likely follows Suppes’ 1957 Rule P and premise-numbers, although Quine’s 

1950 Rule P precedes Suppes:   

 

Quine:  “Rule of premises (P)” – “We may set down any schema as a line at any 

stage in the course of the deduction, provided that we initiate a new innermost 

column of stars at that point.”12  

 

Suppes:  “Rule P” – “We may introduce a premise at any point in a derivation.”13  

 

 Rule P is significant for both logical and pedagogical reasons.  First, the concept of 

assumption or supposition lies at the heart of natural deduction.  In fact, Jaśkowski introduces a 

supposition operator, ‘S’, that is placed in front of a statement that is assumed in a line of a 

deduction.  It is the idea of “suppositional” proof as opposed to the older axiomatic method of 

logic that Jaśkowski credits to his teacher, Jan Łukasiewicz.14 As Anellis observes, Gentzen’s 

system of natural deduction shares the same feature of supposition:  “[p]roofs are begun with 

assumptions and the consequences of those assumptions are obtained by discharging the 

assumptions by conditionalization.”15   It is this model of ordinary mathematical reasoning as 

opposed to the “formalization of logical deduction . . . developed by Frege, Russell, and 

Hilbert”16 that Gentzen is noted for in the history of natural deduction. 

 Second, when we introduce our students to the concept of a derivation or proof of a 

conclusion from a set of premises, we emphasize the concept that every line of a proof must have 

a justification for being written down in the column of numbered lines that comprise the proof.  

This guarantees that every line is logically implied by itself or a subset of the premises.  Rule P 

satisfies this requirement, but many current textbooks do not provide such a rule.  For example, 

my preferred symbolic logic textbook in recent years—Hausman, Kahane, and Tidman’s 

venerable Logic and Philosophy—simply says in a footnote that “the letter p . . . [is used to the 

right of the line] to indicate an argument’s premises.”17  The convention is not presented as a 

syntactic requirement, but rather as an editorial mark.   

 Third, the relationship between a premise and a temporary assumption can be difficult for 

students.  Hausman provides an “Assumed Premise” rule for conditional and indirect proofs, but 

does not discuss the similarity between “original” premises and “assumed” premises.  In fact, 

                                                           
12Quine, Methods of Logic, 157. 
13Suppes, Introduction to Logic, 28. 
14Anellis, “40 Years,” 117.  
15Ibid.  
16Gentzen, “Investigations,” 68. 
17Hausman, Logic and Philosophy, 89. 
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this gloss is typical in current introductory first-order logic textbooks and creates unnecessary 

pedagogical problems.  Rule P illuminates the connection in a very direct way, viz., that there is 

no logical distinction between the premises of an argument and the temporary assumptions that 

are used in constructing conditional  and reductio ad absurdum proofs.  In both cases, we are 

simply entitled to assert that if these antecedent assumptions are true, then this consequent 

statement is true as well.  Systems that have an assumption rule like PARC’s Rule P thus make 

understanding the conditionalization rule—Rule C above—much more accessible to the 

beginning student.  Assumption and conditionalization are interdependent concepts, of course, 

and making their connection explicit is very useful in the classroom. 

 Finally, Rule P sometimes strikes students as strange.  Such a broad permission to write 

down “any formula F” seems contrary to the idea of constructing a derivation according to a very 

limited and precisely defined set of rules.  I approach the puzzlement this way with my students: 

the limitation attached to Rule P is that there is no “free lunch” in a deduction.  When you use a 

previous line in constructing a new line of the deduction, you must cite those source lines—not 

only by the line numbers themselves, but in terms of the original lines written down by Rule P.  

Rule P, together with Suppes-style premise-numbering, identifies precisely which premises 

and/or temporary assumptions logically imply a given line of the proof.  Students quickly learn 

that this feature provides a great advantage both in constructing and understanding a proof.  

 Here’s an example of PARC’s rule citation and the prefixed numerals (without any 

subproofs): 
 

        (1) A  B   Rule P  

        (2) B  C   Rule P 

        (3) (A  C)  (B  D) Rule P 

        (4) (A  D)  E  Rule P  /E 

(1,2)  5. A  C   Rule A, 1, 2, Hypothetical Syllogism 

(1,2,3) 6. B  D   Rule A, 3, 5, Modus Ponens 

(1,2,3) 7. A  D   Rule A, 1, 6, Hypothetical Syllogism 

(1,2,3,4) 8. E   Rule A, 4, 7, Modus Ponens 

 

Rule P guarantees that each line of a valid deduction is logically implied by the line(s) referenced 

in the list of prefixed line numbers.  In the above proof, lines 1-4 are the logical consequences of 

themselves, respectively, while line 6 is the logical consequence of premises 1, 2, and 3.  It 

would be a mistake to list line 5 as a premise number of line 6, of course.  This distinguishes the 

justifications that are standardly written to the right of each line of a deduction and the premise 

numbers listed on the left.  Line 8, the desired conclusion, is the logical consequence of lines 1, 

2, 3, and 4.18   

 In Suppes’s notation, the above proof would look like this, where “T” is Tautological 

Implication: 

 

{1}        1. A  B   P  

{2}        2. B  C   P 

{3}        3. (A  C)  (B  D) P 

                                                           
18I learned the PARC system of prefixed numerals using circles and ovals rather than parentheses around 

the numerals.  I use circles and ovals in lecture as a model for student homework and exams.  Students who submit 

their homework as a word processor document need to use parentheses. 
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{4}        4. (A  D)  E  P  /E 

{1,2} 5. A  C   1, 2, T 

{1,2,3} 6. B  D   3, 5, T 

{1,2,3} 7. A  D   1, 6, T 

{1,2,3,4} 8. E   4, 7, T 

 

 As can be seen in comparing the two proof styles above, the advantage of the PARC 

system of parenthesizing or circling line numbers that are written down by Rule P is that they 

stand out visually.  This is especially useful to students when learning conditional and indirect 

proofs.  However, it should be noted that parenthesizing Rule P line numbers breaks part of the 

logical basis of the premise-number system as originally conceived by Suppes.  Suppes’ 

typography uses the curly braces of set notation to enclose the premise numbers:  “[t]his 

additional notation [the braces] makes it clearer that a given line is a logical consequence of the 

set of premises corresponding to the set of numbers attached to the line.”19  In the case of Rule P 

lines, each assumption is a logical consequence of the set that contains itself.  So, both notations 

have their strengths and weaknesses. 

 Since derivation lines written down by Rule P must be referenced by any subsequent 

lines that are tautologically implied by any conjunction of premises of which that line is a 

conjunct, we can see the value of premise-number notational system over the current, almost 

universal, Jaśkowski/Fitch/Copi graphical method.  The reason is that while notations in 

introductory logic texts require citing inference rules at the right end of each line of the proof, 

only the Rule P premise-number system allows the reader to quickly identify the premises or 

temporary assumptions of the argument that tautologically imply the given line, regardless of 

whether the proof is direct, conditional, or indirect (reductio ad absurdum).  For students learning 

to construct proofs, this feature provides a ready source of a standard proof strategy hints, e.g., 

“What premises haven’t been employed?” or “What temporary assumptions haven’t been 

discharged?”  In my experience, this is a great advantage for beginning logic students. 

 

III. PARC Rules A and R 

 

 PARC Rules A (implication rules) and R (equivalence rules)  have standard counterparts 

in current symbolic logic textbooks.  Approaches to derivation rules may be roughly sorted into 

three groups:  (1) Gentzen-style int-elim systems that contain only rules that introduce or 

eliminate logical connectives, (2) systems that have defined sets of implication and equivalence 

rules, and (3) systems that allow deductions to cite any logical implication or logical equivalence 

whatever as a justification for a given line of a deduction.   

PARC is clearly in category 2.  Here is the language of the PARC rules A (implication) 

and R (logical equivalence or “replacement”): 

 
PARC Rule A:  A formula F may be written down as a line of a deduction if 

both (a) there are previous lines of the deduction from which F follows by 

some elementary argument form (e.g., Copi’s Rules of Inference), and (b) 

each numeral prefixed to any of these previous lines is prefixed to F. 

 

                                                           
19Suppes, Introduction to Logic, 27-28. 
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PARC Rule R:  A formula F may be written down as a line of a deduction if 

both (a) there is a previous line L of the deduction and a pair of elementary 

logically equivalent formulae G and H (e.g., Copi’s Rules of Equivalence) such 

that G is a formula that occurs in L and it is possible to transform L into F by 

putting H in place of one occurrence of G, and (b) all numerals prefixed to L 

are prefixed to F. 

 

 The first type of inference/equivalence rules found in int-elim systems are problematic in 

my experience.  While I prefer an int-elim system in my metalogic course, many of us who teach 

first-order symbolic logic find int-elim systems not to be very “natural.”  Int-elim systems are 

often featured in upper-level textbooks that progress quickly to the issues of completeness and 

soundness, higher-order logics, modal logic, etc.  As Fitch points out, “the whole system can 

most easily be shown to be consistent if no proofs but int-elim proofs are used.”20  Int-elim 

systems in introductory textbooks typically discuss “derived rules of inference” such as 

disjunctive syllogism or De Morgan’s Theorem to show that traditional rules of inference are 

guaranteed in the system.21  This relegation of traditional—read “natural”—rules of inference 

and equivalence to “derived” status is undeniably attractive in advanced logic courses where the 

“naturalness” of the deductive system is secondary to ease and clarity in proving soundness and 

completeness.  Leblanc and Wisdom’s Deductive Logic22 is a particularly elegant example of this 

pedagogical choice. 

 The second sort of natural deduction systems have defined sets of inference and 

equivalence rules.  This approach is very common in contemporary introductory symbolic logic 

textbooks.  One need only look on the inside front and back book covers for lists of deductive 

rules.  These lists typically contain about ten inference rules and eight or nine equivalence rules.  

Copi’s Symbolic Logic is arguably the model for this approach23 and is widely imitated.   On the 

other hand, minimalist rule sets—beyond int-elim systems--are infrequent and require critical 

axioms.  For example, Quine’s 1940 system relies only on modus ponens.  Quine cites Tarski24 

as the source of this ultimately impoverished set of inference rules.25  Small sets of inference 

rules mean longer proofs and in many cases, axiom sets.  This is clearly not a popular choice in 

the logic textbook market. 

 The third sort of natural deduction system has an indefinite set of inference and 

equivalence rules.  For example, in Methods of Logic, Quine moves from the minimalist rule set 

in Mathematical Logic to a system at the other end of the spectrum with the following “TF” rule: 
                                                           

20Fitch, Symbolic Logic, 31. 

 21That alone won’t stop students from complaining that the inordinately long proofs typical of introduction-

elimination systems are evidence of a defective system! 
22Hugues Leblanc and William A. Wisdom, Deductive Logic, 3d ed. (Englewood Cliffs, N.J.:  Prentice-

Hall, [1972, 1976] 1993). 

 23For example, Copi’s Symbolic Logic has standardly contained the following “Rules of Inference:”  Modus 

Ponens, Modus Tollens, Hypothetical Syllogism, Disjunctive Syllogism, Constructive Dilemma, Destructive 

Dilemma, Simplification, Conjunction, and Addition; and the following “Rules of Replacement:”  De Morgan’s 

Theorem, Commutation, Association, Distribution, Double Negation, Transposition, Material Implication, Material 

Equivalence, Exportation, and Tautology, in Copi, Symbolic Logic, inside back cover. 
24Alfred Tarski, “Grundzüge des Systemkalkül, Erster Teil,” Fundamenta Mathematicae 25 (1935), 503-

526, and “Grundzüge des Systemkalkül, Zweiter Teil” [“Foundations of the Calculus of Systems”].  Fundamenta 

Mathematicae 26 (1936), 283-301, in Logic, Semantics, Metamathematics:  Papers from 1923-1939,  2d ed., trans. 

J. H. Woodger, ed., with intro. John Corcoran (Indianapolis:  Hackett Publishing Co., [1956] 1983), 342-383. 
25Willard Van Orman Quine, Mathematical Logic, rev. ed.  (Cambridge, Mass.:  Harvard University Press, 

[1940] 1955), 89. 
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Rule of truth-functional inference (TF):  To any line or lines we may subjoin, as a 

new line, any schema which is truth-functionally implied by the given line or by 

the conjunction of the given lines.26 

 

This indefinitely large set of inference rules is also seen a few years later in Suppes’ system: 

 

Rule T:  We may introduce a sentence S in a derivation if there are preceding 

sentences in the derivation such that their conjunction tautologically implies S.27 

 

One difficulty with the Quine and the Suppes approach to inference rules is that it is far too 

strong.  For example, Suppes’ Rule T justifies writing down the conclusion of any valid 

argument immediately after stating the premises simply by citing Rule T.  After all, the premises 

are written down by Suppes’ Rule P and in the case of a valid argument, their conjunction 

tautologically implies the conclusion.  Thus, Suppes’ Rule T seems to make every derivation a 

“one-liner.”  Hausman provides a very useful discussion of this problem.28  

 In contrast, PARC’s Rules A and R are more plausible for a system of natural deduction 

because they make reference to “elementary” argument forms and “elementary” logical 

equivalences.  Elementary forms and equivalences presumably will include modus ponens, 

modus tollens, disjunctive syllogism, hypothetical syllogism, double negation, contraposition, 

implication, De Morgan’s Theorem, and the like.   

 While PARC Rules A and R merely recommend Copi-style rule sets, and the term 

“elementary” is admittedly vague, the rules have the pedagogical advantage of allowing the 

instructor to select the desired set of “elementary” rules.  There is a minor caveat here of course, 

since the instructor will need to verify the completeness of the rule set by determining that 

omitted rules are provable from the remaining rules.  It is worth noting that PARC’s Rule A and 

Rule R have the same sort of indefiniteness here as the later Quine and Suppes systems.  This 

distinguishes PARC from Copi-style fixed-size inference and equivalence rule sets.  In 

implementing PARC’s Rule A and Rule R, my practice has been to use the implication and 

equivalence rule sets in either the fifth edition of Copi’s Symbolic Logic or the most recent 

edition of Logic and Philosophy. 

 

IV. Conditionalization and PARC Rule C 

 
PARC Rule C:  A formula P  Q may be written down as a line of a deduction if 

both (a) there are previous lines of the deduction P, and Q, such that P was 

written down by Rule P; and (b) all numerals prefixed to Q except the 

numeral prefixed to P are prefixed to P  Q. 

 

 Conditionalization—known to mathematicians as the “deduction theorem” —is the rule 

that allows the temporary assumption of a sentence, p, the subsequent derivation of a sentence, q, 

                                                           
26Quine, Methods of Logic, 157.  

 27Suppes, Introduction to Logic, 28.  Suppes observes in a footnote that this rule allows “the conjunction of 

any finite number of sentences, not just two.  Thus we might have ((P → Q) & (Q → R)) & (R → S), which 

tautologically implies P → S”—hypothetical syllogism in this case. 
28Hausman, Logic and Philosophy, 369-372. 



Teaching the PARC System of Natural Deduction  9 of 17 

 

 

and the final, assumption-free assertion of the conditional p  q.29  In int-elim systems, 

conditionalization is known as “conditional introduction” or “horseshoe introduction.” 

 Most crucially, the rule of conditionalization is, in Quine’s words, “the crux of natural 

deduction.”30  As noted above, natural deduction was created—independently by Jaśkowski and 

Gentzen—out of the desire to replace the axiomatic style of logic found in Whitehead and 

Russell and in Hilbert with the style of reasoning ordinarily used by logicians and 

mathematicians, viz., what follows logically if we assume that such-and-such is true?  This 

pattern of reasoning certainly dates to antiquity but without any formal statement or even 

recognition of its centrality in “natural” deductive reasoning. 

 In the PARC system, the conditionalization Rule C is tied directly to Rule P.  This is 

because of the suppositional character of natural deduction.  When used in a subproof, PARC’s 

Rule P allows the assumption of a temporary premise, but that assumption must be discharged 

before the last line of the proof.  This requires a rule—Rule C—that justifies the creation of a 

conditional in which the temporary assumption can become the antecedent of the conditional 

with the statement derived with the aid of the assumption becoming the consequent.31  As I tell 

my students—again and again, it seems—“If you assume that P is true and derive Q as a result, 

then you are entitled to express that fact with the conditional ‘If P, then Q’.  Whether P is 

actually true or not is irrelevant and hence the assumption that it is true may be abandoned.”   

Here is a simple example32 of a conditional proof in the PARC system: 

 

  (1) A  B   Rule P 

  (2) C  D   Rule P  / (A v C)  (B v D) 

  (3) A v C   Rule P 

 (1,2,3) 4. B v D   Rule A, 1, 2, 3, Constructive Dilemma 

 (1,2)  5. (A v C)  (B v D) Rule C, 3, 4 

 

 Conditional proofs in first-order logic fall into three basic groups.  The first sort of proof 

involves arguments with conditional conclusions or other conditional statements in which the 

antecedent of the conclusion is assumed in a subproof and the consequent of the conclusion is 

derived.  The target conditional is thus demonstrated and the assumed antecedent is discharged.  

                                                           
29The Conditionalization rule in natural deduction is a version of Tarski’s statement of the deduction 

theorem (Axiom 8 in his system).  See Alfred Tarski, “Über einige fundamentale Begriffe der Metamathematik” 

[“On Some Fundamental Concepts of Metamathematics” ], Comptes Rendus des séances de la Société des Sciences 

et des Lettres de Varsovie 23 (1930), 22-29, in Logic, Semantics, Metamathematics:  Papers from 1923-1939, 2d 

ed., trans. J. H. Woodger, ed., with intro. John Corcoran (Indianapolis:  Hackett Publishing Co., [1956] 1983), 32. 

Tarski states in footnote 24 of “Concepts of Metamathematics” that he established the deduction theorem “as far 

back as 1921.”  Alonzo Church disputes Tarski’s claim, stating that “[t]he idea of the deduction theorem and the first 

proof of it for a particular system must be credited to Jacques Herbrand.  Its formulation as a general methodological 

principle for logistic systems is due to Tarski. . .”  See his Introduction to Mathematical Logic (Princeton, N. J.:  

Princeton University Press, [1944, 1956] 1996), 164. 
30Quine, Methods of Logic, 166.  See Pelletier, “Brief History,” for a history of the rule of 

conditionalization. 

 31It is worth noting that from a pedagogical perspective, int-elim systems obscure this connection between 

making an assumption and discharging it through conditionalization.  After all, the conditional introduction rule, I, 

is just another connective introduction rule, seemingly on a par with, say, &I (conjunction).   

 32The argument is from Logic and Philosophy, 130, repeating a challenging nonconditional exercise from a 

previous chapter.   
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The second sort of conditional proof involves indirect proofs, i.e., proofs that assume the 

negation of the conclusion and seek to derive a contradiction.  Once both some statement and its 

negation have been derived, the assumption is shown to be false, and its negation, the 

conclusion, is demonstrated.   

Finally, proofs in predicate logic that utilize Existential Instantiation or Universal 

Generalization implicitly involve subordinate proofs that must be included in the category of 

conditional proofs.  

Copi’s third edition of Symbolic Logic seems to be the source of presenting the 

conditional underpinnings of all three sorts of subproofs in symbolic logic textbooks.  However, 

Copi then presents derived rules for IP (indirect proof) and EI (existential instantiation) based on 

conditional proof.  Most current textbooks present similar derived rules, but very few 

demonstrate the underlying conditional reasoning.  The PARC system is distinctive among 

natural deduction systems presented in contemporary textbooks in that all three sorts of 

subproofs make the conditional reasoning explicit.  While the cost is sometimes a slightly longer 

proof—two or three lines--the pedagogical advantage is that the student again and again sees the 

common logic that underlies proofs with conditional conclusions, reductio proofs, and predicate 

logic proofs with existential lines.   

Beyond Copi, PARC’s other contemporaries—especially Suppes, Mates, and Pollock—

utilize parts of this common logic, but only PARC requires the student to treat all subproofs as 

species of conditional proof.33  The easiest way to understand the first part of this point is to note 

that PARC has neither a “Law of Absurdity” as an inferential rule to assist indirect proofs, nor an 

“Indirect Proof” rule.  (And, as we’ll see below, PARC doe not have an Existential Instantiation 

quantification rule (existential quantifier elimination (E) in int-elim systems) which implicitly 

requires a conditional subproof. 

Schematically, a PARC indirect proof looks like this: 

 

 (1) p   Rule P   / q 

 (2) ~q   Rule P 

    . 

(1 and/or 2) m. r 

    . 

(1 and/or 2) n. ~r 

(1 and/or 2) n+1. r v q    Rule A, m, Addition 

(1,2) n+2. q    Rule A, n, n+1, Disjunctive Syllogism 

(1) n+3. ~q  q    Rule C, 2, n+2 

(1) n+4. ~~q v q   Rule R, n+3, Implication 

(1) n+5. q v q    Rule R, n+4, Double Negation 

(1) n+6. q    Rule R, n+5, Tautology 

 

I express the indirect proof strategy in PARC to my students as follows: 

 

1. Given a conclusion Z, assume the negation of the conclusion ~Z using 

Rule P. 

                                                           

 33Logic and Philosophy is one of the few current textbooks that explicitly discusses the conditional basis of 

an Indirect Proof inference rule (see 139-140). 
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2. Derive some statement K on one line of your derivation (possibly the 

conclusion itself, possible a given premise). 

3. On a later line, derive ~K (or vice versa).  This completes the 

contradiction that is the key to a reductio ad absurdum argument. 

4. Add the conclusion Z to K (K v Z), and then use the other half of the 

contradiction, ~K,  to derive Z by Disjunctive Syllogism. 

5. Write the line ~Z  Z, using Rule C.  This discharges the assumption.  

6. Derive the conclusion Z by Implication, Double Negation, and Tautology.  

 

 Here is an example of an indirect proof in PARC: 

 

  (1) ~(B  A)   Rule P 

  (2) ~G  A    Rule P  / G 

  (3) ~G    Rule P 

(2,3) 4. A     Rule A, 2, 3, Modus Ponens 

(1) 5. ~(~B v A)   Rule R, 1, Implication 

(1) 6. ~~B • ~A   Rule R, 5, De Morgan 

(1) 7. ~A    Rule A, 6, Simplification 

(2,3) 8. A v G     Rule A, 4, Addition 

(1,2,3) 9. G     Rule A, 7, 8, Disjunctive Syllogism 

(1,2) 10. ~G  G    Rule C, 3, 9 

(1,2) 11. ~~G v G    Rule R, 10, Implication 

(1,2) 12. G v G     Rule R, 11, Double Negation  

(1,2) 13. G     Rule R, 12, Tautology 

 

While we know that an Indirect Proof inference rule is a “short-cut” rule, derived from 

the conditional proof rule, some textbooks do not place a pedagogical emphasis on this 

relationship and others don’t even mention it.  Those that observe the connection may quickly 

note it and then present the Indirect Proof rule simply because it is “a shorter way of proving 

what could have been proved by conditional proof.”34  Unhappily, the most obscure approach to 

reductio proofs is found in int-elim systems where the entire reductio process—Negation 

Introduction and Negation Elimination—employs a subproof that appears to the student eye to be 

totally unrelated to a Conditional Introduction subproof.35   

 

V. PARC Quantification Rules 

  
Fm represents any formula in which the variable-type m occurs free, and when used in 
the same context, Fm and Fn will represent formulae that are just alike except that Fn 
has free tokens of n everywhere that Fm  has free tokens of m.  It should be noted 

that Fn may have free tokens of n over and above the ones that correspond to free 
tokens of m in Fm. 

 

                                                           
34Hausman, et al., Logic and Philosophy, 140. 

 35For example, see Karel Lambert and Bas C. van Fraassen, Derivation and Counterexample:  An 

Introduction to Philosophical Logic (Belmont, Calif.:  Dickenson Publishing Co., 1972), 44 ff. 
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Rules of Inference: 

 

 Universal Instantiation (UI): 
 
(m)Fm 

------------------ 
Fn 

 Existential Generalization (EG): 
 
Fn 
--------------- 

(m)Fm 
 

  
 

 Universal Generalization (UG): 
 
Fn  
--------------- 

(m)Fm 
 

UG Restriction:  n occurs free 
neither in any premise of the line 
(m)Fm nor in the line (m)Fm 

itself. 

 Existential Instantiation (EI):  
 
No EI rule of inference in PARC 
 

Note on EI:  Although there is no 
EI rule, one can make an EI-like 

move in the following way.  Given 
a line (m)Fm, you may write 

down Fn by Rule P.  Make 
whatever use of Fn you wish, and 
then remove the prefixed numeral 
by Rule C.  You will then have a 

line of the form Fn  A.  
(Warning:  make sure that A does 

not contain a free occurrence of 
n.)  Now, you may apply UG to 
the line to get (m)(Fm  A).  
Using the prenex normal form 
“prime” equivalence rule (PNF’) 
below, you may write down the 
next line of the proof as (m)Fm 
 A.  You may then conclude A by 

modus ponens with the original 
line (m)Fm. 

 
Rules of Equivalence: 
 

 PNF' (“PNF prime”):  (m)(Fm  A)  [(m)Fm  A] Restriction:  A contains no free 
occurrence of m.36 
 

 Quantifier Negation (QN): 
 
(m)Fm  ~(m)~Fm ~(m)Fm  (m)~Fm 

(m)~Fm  ~(m)Fm ~(m)~Fm  (m)Fm 

 
 

Identity: 

 
Fm Fm   
n = m ~Fn n = m p 
-------------- --------- --------- --------- 
Fn ~(n = m) m = n m = m 

                                                           

 36This common equivalence in first-order logic can be easily proved in PARC.  It is metatheorem 161 in 

Quine’s system in Mathematical Logic, 109.  John Pollock also uses this quantificational equivalence in lieu of an 

existential instantiation inference rule in An Introduction to Symbolic Logic, 135.  The equivalence is Theorem 21 in 

Copi’s RS1 first-order system, Symbolic Logic, 287.   



Teaching the PARC System of Natural Deduction  13 of 17 

 

 

 The PARC rules for predicate logic are distinctive—though not unique—because there is 

no rule for Existential Instantiation, per se.  Since in monadic predicate logic, the UI, UG, and 

EG are very simple, I will focus on arguments that would normally require an EI rule 

application.  The strategy stated in the rule set above is simple:  just assume an “instantiation” of 

an existential statement with Rule P and proceed as described.  Here is an example: 

 

(1) (x)Fx Rule P  /  (x)(Fx v Gx)             

(2) Fy Rule P                                             

(2) 3. Fy v Gy    Rule A, 2, Addition                        

(2) 4. (x)(Fx v Gx)   3, Existential Generalization (EG) 

(0) 5. Fy  (x)(Fx v Gx)  Rule C, 2, 4                                     

(0) 6.  (x)[Fx  (x)(Fx v Gx)]  5, Universal Generalization (UG)  

(0) 7. (x)Fx  (x)(Fx v Gx)  6, PNF’ Equivalence                      

(1) 8. (x)(Fx v Gx)   Rule A, 1, 7, Modus Ponens          

 

The PARC method for dealing with an existential statement via a conditional subproof is first 

presented by Copi in the third edition of Symbolic Logic.37  Copi presents the EI subproof 

schematically, using the the same equivalence as PARC’s prenex normal form “prime” rule 

above. 

 

E:  (ν)(Фν p)  [(μ)Фμ  p],  where ν occurs free in Фν at all and only those places 

that μ occurs free in Фμ, and where p contains no 

free occurrence of the variable ν (ibid.). 

 

i. (μ)Фμ 

. 

. 

. 

 

j. Фν 

 . 

 . 

 . 

k. p       

k+1. Фν  p  j-k, Conditional Рroof 

k+2. (ν)(Фν p) k+i, Universal Generalization 

k+3. (μ)Фμ  p  k+2, Equivalence (E) 

k+4. p   k+3, i, Modus Ponens 

 

Copi acknowledges Leblanc as the source of this approach.38  EI is then advanced as a derived 

rule on the basis of the above schema as an “informal justification.”39  The explicit subproof 

without an EI rule was later adopted by PARC and then by Pollock40.  In terms of a published 

                                                           
37Copi, Symbolic Logic, 3d ed., 112.  
38Ibid., 111. 
39Ibid., 113. 
40Pollock, Introduction to Logic. 
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system, Pollock’s quantification rules are anticipated by PARC.  As in indirect proofs, the 

inherent conditional proof that underlies EI is made explicit in PARC. 

 

Polyadic Predicate Logic in PARC 

 

 There are no surprises here.  Of course, like EI, UG in most systems has multiple 

restrictions.  In contrast, one can see that PARC’s UG restrictions are minimal.  This makes 

polyadic predicate logic much easier for students.  Here is an example that uses UG, UI, EG, as 

well as handling existential lines. 

 

  (1) (x)(y)Lxy Rule P 

 (2) (x)(y)(Lxy   Gxy) Rule P          / (x)(y)Gxy 

 (3) (y)(Lzy   Gzy) Rule P 

(3) 4. Lzw  Gzw 3, Universal Instantiation (UI)  

(1) 5. (y)Lzy 1, Universal Instantiation (UI)  

(1) 6. Lzw 5, Universal Instantiation (UI)  

(1,3)  7. Gzw Rule A, 4, 6, Modus Ponens 

(1,3) 8. (y)Gzy 7, Universal Generalization (UG) 

(1,3) 9. (x)(y)Gxy 8, Existential Generalization (EG) 

(1) 10. (y)(Lzy   Gzy)  (x)(y)Gxy Rule C, 3, 9 

(1) 11. (x)[(y)(Lxy   Gxy)  (x)(y)Gxy] 10, Universal Generalization (UG) 

(1) 12. (x)(y)(Lxy   Gxy)  (x)(y)Gxy 11, PNF’ Equivalence 

(1,2) 13. (x)(y)Gxy Rule A, 2, 12, Modus Ponens 

 

Conclusion 

 

 While much of the PARC system of natural deduction is not original, it is unique in 

combining what I regard as the best-of-all-worlds in first-order logic pedagogy.  It tracks premise 

dependencies, it uses a “natural” set of inference and equivalence rules, and it requires the 

student to learn—at a deep level—the underlying conditional nature of indirect proofs and 

quantificational proofs that require an EI-like decomposition.  While PARC’s rules of sentential 

logic are commonplace—and easily revised—its quantificational rules are a significant 

advantage to the student when faced with complex sets of restrictions.  And perhaps most 

significantly, the PARC system can be easily overlaid on top of Copi-style systems that are 

predominant in current textbooks.41 

                                                           
41This paper reflects the content of my workshop, “The PARC System of Natural Deduction,” conducted at 

the American Association of Philosophy Teachers 20th International Workshop-Conference on Teaching 

Philosophy, College of Saint Benedict and Saint John’s University, Collegeville, Minnesota, July 31, 2014.  I thank 

the editors for the opportunity to present the PARC system in this volume. 
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